Inr JSolidy Structures Yol. 34, Na. 5. pp. 391 602, 1997
\ Published by Elsevier Science Lid
Pergamon

/ Printed in Great Britain. All rights reserved
PIL: S0020-7683(96)00033-9

- 0020 7683 96 $15.00 «~ .00

SCATTERING OF A PLANE ACOUSTIC WAVE BY
A SPHERICAL ELASTIC SHELL NEAR A FREE
SURFACE

H. HUANG
Naval Surface Wartare Center. Indian Head Division. White Oak. Silver Spring.
MD 20903-5640. U.S.A.

and

G. C. GAUNAURD
Naval Surtace Wartare Center. Carderock Division. White Oak. Silver Spring.
MD 20903-3640. U.S.A.
{Receired 31 May 1995 0 in revised form 13 February 1996)

Abstract  The acoustic scattering by a submerged spherical elastic shell near a {ree surfuce. which
is insonified by plane waves at arbitrary angles of incidence is analyzed in an exact fashion using
the classical separation of variables technique. To satisy the boundary conditions at the free surface
as well as on the surface of the spherical elastic shell. the mathematical problem is formulated using
the image method. The scattered wave fields are expanded in terms of the classical modal series of
spherical wave functions utilizing the translational addition theorem. Quite similar to the problem
of scattering by multiple spheres. numerical computation of the scattered wave pressure involves
the solution of an ill-conditioned complex matrix system the size of which depends on how many
terms of the maodal series are required for convergence. This in turn depends on the value of the
frequency. and on the proximity of the spherical elastic shell to the free surface. The ill-conditioned
matrix equation is solved using the Gauss Seidel iteration method and Twersky's method of
successive iteration cross checking each other. Backscattered echoes from the spherical elastic shell
are extensively calculated and displayed. The result also demonstrates that the large amplitude low
frequency resonances of the echoes of the submerged elastic shell shift upward with proximity to
the free surface. This can be attributed to the decrease of added mass for the shell vibration. The
present benchmark solution could eventually be used to validate those found by numerical schemes.
Published by Elsevier Science Lid.

INTRODUCTION

The scattering of sound waves by bodies near a free surface presents difficulties and
characteristics far beyond those present when the body is in a boundless space. The
backscattering cross-section of a body near the sea surface. even when the sea is perfectly
calm. often bears no resemblance to its cross-section in deep waters, far away from any
environmental boundary. For the case of an impenetrable (i.e. soft. hard, perfectly conduct-
ing.etc. .. .) body near a plane boundary. there have been some studies. both in the electro-
magnetic and in the acoustic literatures that have addressed some aspects of the multiple
scattering problem that results (Brunning and Lo. 1971 ; Gaunaurd and Huang. 1994;
Ivanov, 1968 : Liang and Lo, 1967). When the body is an elastic structure, we know of no
instance in which a detailed treatment has been published. The present paper studies the 3-
dimensional scattering by an elastic spherical shell submerged near the free surface of an
acoustic half-space. when the shell is insonified by a plane wave at an arbitrary angle of
incidence. This steady-state formulation rests on the venerable method of separation of
variables and the classical method of images. In view of the presence of the image. this
becomes a multiple scatlering problem truly of structural acoustics, since the scatterer and
its image are both elastic shells. Qur exact analvtical solution generated within the context
of linear acoustics is evaluated and graphically displayed in wide frequency bands that
extend into the ‘resonance region’ of the shell. The shell theory used is the popular bending
theory (Junger and Feit. 1972). This shell theory vields results that agree well with those of
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Fig. 1. Geometry of the problem.

the 3-dimensional theory of elasticity. for the shell thickness, material, and the frequency
band we have used here. We also found that the large amplitude low frequency resonances
of the echoes of the submerged elastic shell shift upward with proximity to the free surface.
This can be attributed to the decrease of added mass for the shell vibration. The present
solution could eventually serve to validate those found by numerical schemes.

DESCRIPTION OF THE PROBLEM

Figure | illustrates the geometry of the problem. The spherical elastic shell is located
beneath the free surface. Its middle surface radius and thickness are denoted by « and #,
respectively. Its material properties are mass density p,, Young's modulus £ and Poisson’s
ratio v. The origin O of a spherical coordinate system (r, 6. ¢) coincides with the center of
the spherical shell. The azimuthal coordinate ¢ is not shown in the figure. The distance
from O to the free surface is ¢'2. The line joining the two apexes of the spherical shell is
perpendicular to the free surface. The mass density and sound speed of the fluid medium
in which the shell is submerged are denoted by p and c¢. respectively. The propagation
vector of the incident plane wave is parallel to the plane of the paper and makes an angle
x with the normal to the free surface.

The image of the spherical shell mirrored by the free surface lies above the free surface.
The origin O’ of a second spherical coordinate system (.0, @) also coincides with the
center of the image spherical shell. The primed and the unprimed spherical coordinate
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systems have identical azimuthal coordinate ¢. The distance from O’ to the free surface is
also di2.

The incident plane wave will be reflected by the free surface and this reflected wave
plays the role of a second incident plane wave of the same magnitude. but is incident upon
the spherical shell at a different angle. Moreover, the waves scattered by the vibrating elastic
shell will also be reflected by the free surface and they will act as a third set of waves incident
upon the shell. To completely determine the scattered wave field and the echo from the
spherical elastic shell. the wave equation governing the wave motion in the fluid medium
and the equation of motion of the shell are simultaneously solved satisfying the boundary
conditions at the free surface and on the spherical elastic shell.

MATHEMATICAL FORMULATION

For clarity. the following dimensionless quantitics are used :

I d 3 ! h-
W= D= R= R = p = -
a « d d 12a°
pu - I3 P o
M= . T = Lo Il="00 Q= (b
p.h Pl =) pe” ¢

where w. m and p denote. respectively. the radial deflection of the elastic shell, the angular
frequency of the incident wave, and the pressure in the fluid medium. The Helmholtz
equation governing the total pressure field in the fluid medium can be written as

V'I+Q 11 =0 (2)

where V- is the Laplacian and a time-dependence of exp( —iQT) is assumed. The boundary
conditions for [T are

Mm=20 (

9%
—

at the free surface and
) oW (4)
) R=1

on the spherical shell surtace.
The mathematical expression for the incident plane wave depicted in Fig. [ is (Ivanov.
1968)

nm. (R ()‘ . Q) — e/!)l{[cnw”unxy < SIS T Cos (5)

where i =\ — 1. The series expansion of eqn (5) in terms of spherical wave functions is

1

N 27(5(
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where j, and P, are respectively the spherical Bessel function of the first kind and the
Legendre function.
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#

The free surface will reflect this plane compression wave as a tension wave which will be
incident on the sphere at an angle of incidence (7 — ). This reflected wave can be considered
as the mirror image of the incident plane wave from beneath. Its mathermatical expression
in the primed spherical coordinates is

nl/h r'(R/ 0 (p Q) — 7C’AR jcont costm %) e sind singm x)cos o) (9)
which can be expressed in the unprimed coordinate system as
Hmu ( ) @. Q) SZRl; bCas (T %) - NI 2 eos @) e!&!l)cm‘ y‘ (10)

The series expansion of the above equation is

. m=r

nunr(R 0 (p Q) l!l[hmx Z Z )\ ()m ])n mjn(QR)P:;: (COS H)P:,” (COS 1) e,'nll/’.
s om=0

(1
The sum of the above "two™ incident waves is

s nr=H
Hmz _}_nmu =2 V Z L ?“"’

n= H =0 Nmn

,,(QR)P::] (COS (_))[] . ( _ ])n m eiQDm.\ x]Pm cos 1) emzm

(12)

At the free surface. 2R cos# = D. the sum of eqns (5) and (10) vanishes, and it can also be
numerically demonstrated that eqn (12) vanishes there too. The wave scattered by the
sphere is

’ me

M RH.0.Q =Y > B, h{(QR)P) (cost)e™ (13)

n=0 =10

where the coefficients B, are to be determined from the boundary condition on the shell
surface and 4, denotes the spherical Hankel function. The reflection of this scattered wave
by the free surface is the negative image of eqn (13),

* ni—n

M (R .. Q==Y 3 B, h(QR)P (cos(n—8)) e (14)

n= li =1
The total pressure field is
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The addition theorem of spherical wave functions for the geometry described in Fig. |
{Ivanov, 1968) has been applied to the last sum of egn {13) to represent it in the unprimed
spherical coordinates and the quantity Q” is

7ir1 o n-yq

Q,’,,,,,,“,(D.mz“\:'f Y =Dk QD) (16)

N
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where

s |
\/{JQ }’”,),!,(n_;m)! (¢g.1.0.9:6.0)(g. n.m. —niia.0). (17)

h(;/l”l/” — (_ l)/”
The gquantity { j,.j-.1m,.01. j.m) in the above equation is a Clebsch—-Gordan coefficient.
The modal expansion of the radial deflection of the shell is

W=3 Y W,Plcosl)e™ (18)

n=1{ m=0
and the boundary condition on a spherical elastic shell can also be written as

CTT N .
ey —aw,, (19)
R Juoy

The bending theory equation of motion for the spherical elastic shell (Junger and Feit,
1972} is used here. [t can be written in terms of only the radial deflection W as the following:

[A n/mr‘ ] )]
W o= 20
- r (20)

"

where. for a complete uniform spherical shell. I', does not contain m, and

r_ Q' — (4, +CHQX +(4,C, - B,D,)]
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X \ D—(1-v
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Applying the boundary condition in eqn (19) yiclds

Bnm - ( Z ( - l )(,’ ,”Brm/Qllnnlm((R:,v- H:/))Xu(gz)
G=0

2—dy, :
— _21-u 77\’( O X,,(Q)[] _ ( _ l)n /NeI!leO,\X] PT (COS 1) (22)

where

[ (Q) +Q),(Q)

X = Q@)

(23)

If (N+1) terms. i.c. (¢ = 0— N) are used. eqn (22) can be arranged into a complex matrix
equation for each m as the following:

[A](B) = (S) (24)

where A 1s 4 (N+1—m) by (N+1—m) complex matrix. and B and S are (N+1—m)
complex vectors for each m. The elements of the matrix A are

‘/\HNI = ] - Q;H/mm(D~ n)’(,,(Q) (25)

for diagonal elements. and

Ay = — (=17 "Q D)X, (Q) (26)
for the off-diagonal elements. The elements of the vector S are

2 3 2 - Siiny . .
S” _ i (’;\,7( ) Y”(gz)[);:, (cos 1)“ (- l)u - elSZDuuxx] (27)

/
Hany

and the elements of the vector B are B,,. [n the matrix equation, # and ¢ range from m to
N. From this matrix equation, the complex coupled coefficients B,,, can be solved for, and
then the total or the scattered pressure field can be computed. For very large R.

SR

BQRY i

QR 28)

The total far field scattered pressure expression can be simplified as
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[y t
The form tunction is defined as the absolute value of

FAR .. Q) = 2R[IT*(R.0. . N+ TT*"(R. 0. p. )] e =" (30)

NUMERICAL RESULTS AND DISCUSSION

The complex coeflicients B,,, in eqn (22) are tound by solving the truncated complex
lincar system. eqn {24). exactly. The truncation. i.c. the number ot terms N used for the
sums fromn =0ton =Nand ¢y =0to g = Ninegns (15). (27) and (22). depends on the
degree of accuracy required. the vaiue of Q and the complexity of the wave interaction
picture. For each frequency. it is necessary 1o solve the complex equation. egn (24). N times
to tind B,, where m and n range from O 1o N. The sizes of the matrices are
(N1 —m) x (N+1—m).

As in the case of scattering by a hard sphere near the free surtace (Gaunaurd and
Huang. 1994). the off-diagonal elements of the matrix A for typical cases are in general
many orders of magnitude smaller than the diagonal elements. The matrix A s therefore
severely ill-conditioned and the linear complex system in eqn (24) 1s not solvable using the
Gaussian elimination type of procedures. but lends itself congenially to be solved by the
Gauss Seidel iteration technique. Notwithstanding the details. the present solution method
15 similar to that of Brunning and Lo (1971). The Gauss-Seidel method does not guarantee
convergence (Hildebrand. 1956). In fact. in the present computation for cases where the
elastic shell is verv ¢lose 10 the free surface (0 < 2.3). the method diverges in the neigh-
borhoods of some of the resonance frequencies. The present converged numerical results
are computed to 8-digits accuracy. and the Gauss Seidel technique requires more iterations
for larger matrices and lower values of m. At low ms it requires about 25 and at high ms 2
or 3 iterations to converge to the required 8-digits accuracy. The Gauss- Seidel results are
checked by those obtained by Twersky's method of successive iteration used in other
multiple scattering problems (Twersky. 1952 Liang and Lo. 1967). In the application of
this later method. the corresponding values for the case in which the shell is submerged in
an infinite fluid medium are first used for B,,, in the sum of eqn (22) to calculate a second
set of B,,. The second set is again used in the sum to calculate a third set of B,,,. This
iteration continues until the Ath result agrees with the (A4 1th to the present §-digit
accuracy criterion. For converged results. both Gauss Seidel and Twersky’s methods agree
with cach other. The two methods diverge at the same places.

All subsequent numerical results are presented tor the case ot a steei shell with a
thickness to radius ratio 1 ¢« = 0.03 submerged in water and for an incident angle » = 0.25n.
The observation point is at R = 100.0. 0 = 1.257. and ¢ = n. Results are obtained for a
large range of Q (= Aw) as well as D, the normalized distance of the spherical shell center
to the center of the image shell. The values of the material properties used are such that
M =427984 and (" = 17.79133. In the computations. N = 40 is used for the results to
converge to 8-digits accuracy up to € = 25.0.

[t is due to the term [T eqn (14). representing the reflection of the scattered pressure
radiated from the shell that the coefficients B, are coupled in # and consequently their
values have to be calculited by solving the simultaneous complex system in eqn (22).
Alternatively. it can be said that this 15 due to the repeated interactions between the real
and the image spherical elastic shells. To facilitate the evaluation of the interaction etfects
due to the image spherical shell. the problem s first solved without the term IT"" and the
backscattered torm function. eqn (30). based only on the scattered pressure emanating
from the real shell. IT“ 15 first plotted. [tis clear from egns (22) and (16) that the interaction
of the image spherical shell manifests itselt through the term Q... which is proportional
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Fig. 2. Backscattening form function based on IT** only. without T1""" in the solution. for D = 2.5.

to the spherical Hankel function /4,(QD) which in turn has a modulus decreasing with QD.
It therefore follows that the interaction effects of the image spherical shell decrease either
with higher frequencies or with larger distances of the shell from the free surface. In other
words. the values of IT*“ would approach those for the scattering of a spherical elastic shell
in an infinite boundless fluid medium as D or Q is increased. The backscattered farfield
form function is calculated at R = 100.0. / = [.257 and ¢ = =n. Figure 2 presents this form
function vs Q (light solid curve) for the case where the apex of the spherical shell is 0.25
radius below the free surface (D = 2.5) and compares it to that of the same spherical shell
in an infinite fluidd medium (heavy solid curve). It can be seen that the difference between
the two curves is very pronounced for the large amplitude low frequency resonances of the
echoes of the submerged elastic shell and after Q = 5.0 the difference tapers off quickly
with the increase of frequency. This demonstrates that the effect of the reflected scattered
pressure radiated by a submerged elastic structure in close proximity to the free surface is
significant. The resonance frequencies of the low frequency echoes shift upward as the shell
1s placed closer to the free surface. This is shown more clearly in Fig. 3 using an enlarged
Q axis scale. This frequency shift phenomenon has been measured and calculated for cases
of vibrating bubbles near a free surface (Strasberg, 1953). Strasberg (1953) effectively
reasoned that this frequency shift is due to the decrease of added mass of the vibrating
object by the proximity of the free surface. From the fluid-structure interaction point of
view. the effect of fluid added mass is quite significant for the low frequency vibrations of
submerged elastic structures. By the same reasoning. it can be expected that the low
resonance frequencies of a vibrating structure in the vicinity of a hard surface or another
structure will shift downward due to the increase of added mass. The present numerical
example 1s for a rather thick shell (h;a = 0.03). It is also expected that the frequency shift
could be more pronounced for thinner shells.

The corresponding two curves for the case where the apex of the spherical shell is 4
radii beneath the free surface (D = 10.0) is presented in Fig. 4. Here the effect of the
reflected scattered wave is insignificant on the magnitude of the form function. The effect
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Fig. 3. Backscattering form function based on IT77 only. without 11" in the solution. for D = 20.9.

forms an oscillation pattern due to the oscillating nature of /,{QD) in the term @), at
large QD as indicated in eqn (28). It is evident that the period of oscillation 1s 27/D. The
same curves for the case in which the apex of the spherical shell is 9 radii beneath the free
surface (D = 20.0) are plotted in Fig. 5 where it can be seen that the effect of the reflected
scattered pressure is very small and vet the signal of this osallation pattern is still quite
clearly visible. Results for the case in which the apex of the spherical shell is 24 radii beneath
the free surface (D = 50.0) are also computed and when plotted in the same scale as Fig.
5. the effect of the reflected scattered pressure 1s no longer visible,

Hereafter, the reflected incident wave IT™" is included in the calculations. As indicated
by eqns (10) and (29). there are phasc factors €”*~* and ¢** " associated with [1"" and
[T respectively. In the time domain. these phase factors would imply different arrival
times for these two waves. As discussed earlier. there are three sets of repeatedly incident
waves acting on the spherical shell from different directions and with different phases,
therefore the successive interactions among the various reflected and creeping waves are
much more complex than in the infinite fluid medium case. Now the backscattering form
functions are calculated based on the sum of IT"“4+ T Again, all backscattering form
functions are presented for z = 0257, R = 100.0. ) = 1.257 and ¢ = =. Figure 6 is a plot
(light solid curve) for the case in which the shell is in close proximity of the free surface
(D = 2.5) together with the corresponding form function (heavy solid curve} of the same
shell in an infinite Hluid medium. Here. as shown carlier in Fig. 2. the effect of the reflected
scattered pressure is significant at low frequency. With the participation of the reflected
incident plane wave. the magnitude of the echo averaged over frequency is roughly twice
that of the infinite medium case.

Figure 7 plots the corresponding two curves for the case in which the shell is relatively
far from the free surtace (D = 20.0). Here. although the effect of the reflected scattered
pressure 1s negligibie as shown in Fig. 5. some of the low frequency resonance peaks are
still twice the value of those tor the infinite medium case due to the participation of the
surface-reflected incident plane wave. The highly oscillatory pattern is due to the phase
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factor e”“=* This is the exact mathematical description of the Lloyd mirror effect of

elementary acoustics (Urick. 1967). Almost the same form function curve in Fig. 7 can be
obtained by a much simpler computation neglecting the sum on the left-hand side of eqn
(22).

In summary. the present paper has presented an exact analytical solution based on
modal series expansion for the title problem. This steady-state solution is obtained within
the framework of linear acoustics and is valid everywhere except when the shell is touching
the free surface. With minor modification, the mathematical formulation and numerical
solution method can be immediately applied to solve the corresponding problem for the
shell placed near a hard surface or for the scattering by two or more spherical elastic shells
of different sizes and properties. The numerical results also demonstrate that the low
resonance frequencies of a vibrating submerged structure shift upward with the proximity
of the free surface. The present solution could eventually be used to validate those found
by strictly numerical codes.
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